Vegetation Monitoring Data Entry Protocol

This protocol describes the process for how to digitize or enter data that was recorded in the field during vegetation monitoring along a transect on the Point Intercept Data Form.

Step 1. Open the appropriate Vegetation Monitoring Data Entry Template for the specific project

The Template can be found in the FieldForms&DataSheets folder of the specific project, in the MySQL Data Uploads Folder, or via the Project Data section of the Interactive Guide to Asset Management.

Q:\Research\MySQL database\DataUploads\UploadTemplates

Q:\Research\Restoration\DeerCreek\Monitoring\FieldForms&DataSheets

Q:\Research\Projects\High_Line_Canal\EcologicalMonitoring\FieldForms&Datasheets

Point Intercept Data Form

The Template is a macro enabled document. Select *Enable Content* in the yellow ribbon near the top of the document.

SECURITY WARNING Some active content has been disabled. Click for more details.

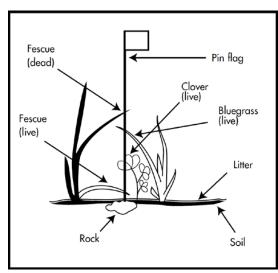
Enable Content

Step 2. Complete the Top portion of the form. Blue cells indicate they are acceptable cells to enter data. These tables should be straight forward. You may notice values automatically being generated in adjacent cells; you can ignore these, they aid in uploading the data into the Research Database.

Study Site Name	Chatfield Farms			
Project	Deer Creek Riparian Restoration			
Transect ID:	4, Tag #1,#98			
Transect Length (m)/# points:	25 m/100 pts			
Date:	20180720			
Start time/ End time	0800/1015			
Observers:	Margo Paces, Meghan McGill			
Photo:	004~008			
Orientation (degrees):	65			
		Bank Height		
Meter Mark:	Distance to stream (m)	(m)		
0	3	1		
12.5	2	0.5		
25	1.5	0.75		

	Α	В	С	D	E	F	G	H 🖆	
1	Study Site Name	Chatfield Farms		Observers	Margo Paces	Meghan McGill			
2	Project	Deer Creek Riparian Restoration		user_id	114	163	#N/A	#N/A	
3	Transect	DBG_CF_Transect4_TSP1	4						
4	Date	20180720							
5	Start Time	8:00:00							
6	End Time	10:15:00			YOU MUST SAVE	THIS WORKBO	OK AS A .xs	Im DOCUI	
7	Meter Mark	Distance to stream	bank height						
8	0	3	1		Save as YYYYMMDD_Site	Name_Transect.xsl	m here:		
9	12.5	2	0.5		Q:\Research\MySQL_da	tabase\DataUpload	ls\ToBeUploade	d\Monitoring	
10	25	1.5	0.75						
11									

Step 3. Complete the POINTS table


This table will have 1 row for every point along the transect. Soil Surface should be entered for every row, while Canopy Cover Score and Soil Moisture Percentage may repeat on larger intervals, depending on the protocol. The Soil Surface column is linked to a controlled vocabulary that is enabled with autocomplete.

				Soil Moisture	Canopy Cover (# covered	
Transect Point	Top Canopy	Lower Canopy Layers	Soil Surface	(%)	dots/96)	Canopy Cover Species
0	FESTU	PONE18, TRIFO, L	R	35	79	POAN3, ACNE2, PODE3
0.25	FESTU	L	FESTU			

POINTS				
Transect Point	Soil Surface	soil_surface_id	Canopy Cover Score	Soil Moisture Percentage
0	rock	2	79	35
0.25	litter	3		

Step 4. Complete the HITS table

This table will most likely have more rows than there are points along the transect. Each "hit" (plant species/ or soil surface type) that is encountered along the transect will require a new row. See example below.

				Soil Moisture	(# covered		
Transect Point	Top Canopy	Lower Canopy Layers	Soil Surface	(%)	dots/96)	Canopy Cover Species	
0	FESTU	PONE18, TRIFO, L	R	35	79	POAN3, ACNE2, PODE3	

HITS					
Trasect Point	Hit (1 or 2)	Species Code	accepted_sp	Soil Surface	soil_surface_id
0	1	FESTU	#N/A		#N/A
0	2	PONE18	#N/A		#N/A
0	2	TRIFO	#N/A		#N/A
0	2		#N/A	litter	3
0	2		#N/A	rock	2
			#N1/A		#NI/A

Step 5. Complete the CANOPY table

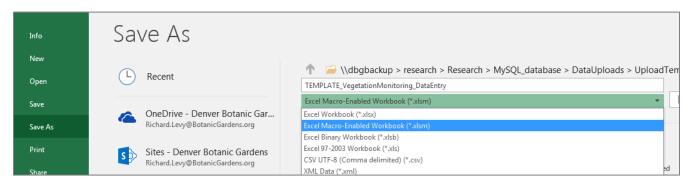
This table will require a row for each canopy species observed. One point on the transect may have multiple species and thus multiple rows. See example below.

					Canopy Cover		\top
				Soil Moisture	(# covered		
Transect Point	Top Canopy	Lower Canopy Layers	Soil Surface	(%)	dots/96)	Canopy Cover Species	
Trunscet Fourt	Top carropy	cower canopy cayers	John Juniace	(70)	4013/30/	canopy cover species	J 1

CANOPY			
Transect Point	Species Code	accepted_speci	ies_id
0	POAN3	#N/A	
0	ACNE2	#N/A	
0	PODE3	#N/A	
		#N/A	

Step 6. Complete the OUTSIDE OF TRANSECT SECTION table

This table allows the user to enter the species that were observed outside of the transect, but were not recorded as HITS.


Step 7. Save the document

Save the entire workbook as **YYYYMMDD_SiteName_Transect.xslm** here:

Q:\Research\MySQL_database\DataUploads\ToBeUploaded\Monitoring

Use the monitoring date for the YYMMDD in the file name

Please use "Save As" and not just "Save" as this will overwrite the template. If you wish to save and continue entering data later, you must save the document as a .xslm. To do so, select "Save As" and then change the file type. If you will not return to enter more data, it is ok to save as .xslx (normal workbook). In any case, DO NOT SAVE AS A CSV.

